Write the following cubes in expanded form : $(2 x+1)^{3}$
Using Identity $VI$ and Identity $VII,$ we have
$(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y),$ and $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$(2 x+1)^{3}=(2 x)^{3}+(1)^{3}+3(2 x)(1)[(2 x)+(1)]$ [Using Identity $VI$]
$=8 x ^{3}+1+6 x [2 x +1] $
$=8 x ^{3}+1+12 x ^{2}+6 x =8 x ^{3}+12 x ^{2}+6 x +1$
Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=k x^{2}-\sqrt{2} x+1$
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(y)=y^{2}-y+1$
Give one example each of a binomial of degree $35 $, and of a monomial of degree $100 $.
Examine whether $x+2$ is a factor of $x^{3}+3 x^{2}+5 x+6$ and of $2 x+4$.
Find the remainder when $x^4+x^3-2x^2+x+1$ is divided by $x -1$.